Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Antibiotics (Basel) ; 11(8)2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-1957211

ABSTRACT

The COVID-19 pandemic affected access to care, and the associated public health measures influenced the transmission of other infectious diseases. The pandemic has dramatically changed antibiotic prescribing in the community. We aimed to determine the impact of the COVID-19 pandemic and the resulting control measures on oral antibiotic prescribing in long-term care facilities (LTCFs) in Alberta and Ontario, Canada using linked administrative data. Antibiotic prescription data were collected for LTCF residents 65 years and older in Alberta and Ontario from 1 January 2017 until 31 December 2020. Weekly prescription rates per 1000 residents, stratified by age, sex, antibiotic class, and selected individual agents, were calculated. Interrupted time series analyses using SARIMA models were performed to test for changes in antibiotic prescription rates after the start of the pandemic (1 March 2020). The average annual cohort size was 18,489 for Alberta and 96,614 for Ontario. A significant decrease in overall weekly prescription rates after the start of the pandemic compared to pre-pandemic was found in Alberta, but not in Ontario. Furthermore, a significant decrease in prescription rates was observed for antibiotics mainly used to treat respiratory tract infections: amoxicillin in both provinces (Alberta: -0.6 per 1000 LTCF residents decrease in weekly prescription rate, p = 0.006; Ontario: -0.8, p < 0.001); and doxycycline (-0.2, p = 0.005) and penicillin (-0.04, p = 0.014) in Ontario. In Ontario, azithromycin was prescribed at a significantly higher rate after the start of the pandemic (0.7 per 1000 LTCF residents increase in weekly prescription rate, p = 0.011). A decrease in prescription rates for antibiotics that are largely used to treat respiratory tract infections is in keeping with the lower observed rates for respiratory infections resulting from pandemic control measures. The results should be considered in the contexts of different LTCF systems and provincial public health responses to the pandemic.

3.
Nat Med ; 26(9): 1405-1410, 2020 09.
Article in English | MEDLINE | ID: covidwho-653871

ABSTRACT

In late December 2019, a cluster of cases of pneumonia of unknown etiology were reported linked to a market in Wuhan, China1. The causative agent was identified as the species Severe acute respiratory syndrome-related coronavirus and was named SARS-CoV-2 (ref. 2). By 16 April the virus had spread to 185 different countries, infected over 2,000,000 people and resulted in over 130,000 deaths3. In the Netherlands, the first case of SARS-CoV-2 was notified on 27 February. The outbreak started with several different introductory events from Italy, Austria, Germany and France followed by local amplification in, and later also outside, the south of the Netherlands. The combination of near to real-time whole-genome sequence analysis and epidemiology resulted in reliable assessments of the extent of SARS-CoV-2 transmission in the community, facilitating early decision-making to control local transmission of SARS-CoV-2 in the Netherlands. We demonstrate how these data were generated and analyzed, and how SARS-CoV-2 whole-genome sequencing, in combination with epidemiological data, was used to inform public health decision-making in the Netherlands.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/genetics , Genome, Viral/genetics , Pandemics , Pneumonia, Viral/genetics , Betacoronavirus/pathogenicity , COVID-19 , Clinical Decision-Making , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Netherlands/epidemiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Public Health , SARS-CoV-2 , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL